(A+B)+(C+D)+(E+F)

=(A+B)(C+D)(E+F)

E E+F| =(4 +B) (C+ D) (E+F)
F

{a)

A

B ,

C (A+B)(C+D) (E+F)
D ‘ =(A+B)(C+D) (E+F)
E

F

(b)

(A+B)(C+D)(E+F)

{c)

101

NAND-TO-AND AND
NOR-TO-OR GATE
NETWORKS

FIGURE 3.29

NAND-TO-AND AND NOR-TO-OR GATE NETWORKS

3.23 In the two preceding sections, we showed how to analyze and design
networks using NAND and NOR gates in NAND-to-NAND and NOR-to-NOR
forms. Two other forms are in common usage: the NAND-to-AND and the NOR-
to-OR forms.

Since NAND gates are quite popular and since the outputs from NAND gates

NOR-to-NOR gate
network analysis.

102

BOOLEAN ALGEBRA
AND GATE
NETWORKS

FIGURE 3.31

@Il Th N

(A+B+C)

ol

{(A+B+0)

A

(A+B+0)

[plv TN

A (A+B+C()
B
C
A A+B+C
ﬁ}
c
i
I_i
c

oS

—p—

\pIAe-INN

(A+B+CO)+(A+B+C)+ (A +B+0)

=(A+B+C)(A+B+C) (A+B+C)

=(A+B+C)(A+B+C)(A+B+0)

(A+B+C)A+B+C) (A+B+C)

=(A+B+C){A+B+C){A+B+0)

(A+B+C)(A+B+C) (A+B+C)

D

NOR gate network
analysis.

sometimes can be ANDed by a simple connection, as we show later, we first present
the analysis and design procedures for NAND-to-AND gate networks.

Figure 3.33(a) shows a NAND-to-AND gate network with inputs A, B, C,
D, and E. Figure 3.33(b) shows the same configuration but with the NAND gates
replaced by the equivalent NAND gate symbol from Fig. 3.24. This shows a
NAND-to-AND network functions like an OR-to-AND network with each input
complemented and leads to this design rule.

103

AB
00011110 NAND-TO-AND AND

NOR-TO-OR GATE
of 1 {1 - NETWORKS

c

A+C)A+0T)
A — -
A+C)+(A+C)

c
A =A+C) - (A+0)
c =A+C) (A +C)
AB

00011110
1

=AB+C) FIGURE 3.32

=

Two NOR gate de-
signs.

104

FIGURE 3.33

NAND-to-AND gate
network. (a)} Conven-
tional NAND-to-AND
gate network. (b)
NAND-to-AND with
equivalent gates sub-
stituted.

b. NAND-to-AND in (a) but with equivalent gates substituted for NANDs.

DESIGN RULE

Example

Design a NAND-to-AND gate network for the input-output values in Table 3.24.
We add a sum-term column (Table 3.25) and then AND the sum terms where Os
appear in the output values. Our product-of-sums expression is thus (A + B +

TABLE 3.24 '
OUTPUT

TABLE 3.25 105
OUTPUT SUM TERM

NAND-TO-AND AND
NOR-TO-OR GATE

CXA + B + C)A + B + CYA + B + C). This must be simplified. The NETWORKS

simplified expression is (A + B + C)A + B)B + C). The rule states that we
must now form a NAND-to-AND gate network, but that each input should be
complemented. This means each variable in (A + B + C)(A + B)B + C) must
be complemented. The inputs for one NAND gate thus will be A, B, and C which
are from the first sum term (A + B + C). The inputs to the second NAND gate
will be A and B from the term A + B, and the third NAND gate will have as
inputs B and C from the sum term B+ C). The resulting block diagram is seen
in Fig. 3.34.

NOR-to-OR gate networks are also widely used because NORs are the natural
gates for emitter-coupled logic (ECL) circuits, a major circuit line. Figure 3.35(a)
shows a NOR-to-OR gate network with four inputs and the output boolean algebra
expressions. Figure 3.35(b) shows the same configuration but with equivalent gates
from Fig. 3.29 substituted for the NOR gates. This shows that the basic form for
the boolean expression realized is AND-to-OR but with each input variable com-
plemented. Thus the design rule for a NOR-t0-OR gate network is as follows:

FIGURE 3.34

AB Design of a NAND-to-
00011110 AND network.

0] 0] 1

1!11

(A+B+) (Z +B) (B+ 5) is simplified expression

C

’

B Qb >l

(ABC) (AB) (BC)
={(A+B+C)(A+B)(B+C)

ol

(A+B)+(C+D)

ST

BOOLEAN ALGEBRA

AND GATE
NETWORKS —_— -
AB+CD
c Above net with equivélent gates
from Fig. 3.29 substituted for
FIGURE 3.35 NOR gates

NOR-to0-OR gate net-
work and equivalent
network.

DESIGN RULE

Table 3.26 shows a table of combinations to be realized as a NOR-to-OR
gate network. The product terms are added to the table, and then the boolean
algebra expression is derived for the problem: ABC + ABC + ABC + ABC +
ABC. This expression is then simplified, giving AB + BC + AC.

The design rule says that to realize a NOR-to-OR gate network we use the
above expression but complement each input. This means the first NOR gate will

TABLE 3.26 ,
OUTPUT PRODUCT TERMS

ol |
o |
-+
o

(A+B)+(B+C)+ (4 +0)

W

9]}

AB+BC+AC

b

107

FIGURE 3.36

have as inputs A L and B from the product term AB; the second NOR gate will have
as inputs B and C from the product term BC; and the third NOR gate will have as
inputs A and C from the product term AC. Figure 3-36 shows this design.

WIRED OR AND WIRED AND GATES

*3.24 In certain integrated-circuit technologies, it is possible to form OR and
AND gates by means of a simple connection. Figure 3.37(a) shows a NAND-to-
AND gate combination in which the AND gate is formed by simply connecting
the NAND gate outputs. The wired AND gate in Fig. 3.37(a) requires no additional
circuitry beyond that required for the NAND gates. This is shown by the dotted
lines used in the NAND symbol.

Only certain NAND gates can have their outputs connected in this way and
still form an AND gate. The designer of the NAND gates arranges for this feature,
and the manufacturer will indicate on the specification sheet when this can be done.
For example, when transistor-transistor logic (TTL) circuits are used, the specifi-
cation sheets sometimes refer to the gates as having ‘‘open collectors,”” which
means they can be formed into NAND-to-AND nets by simply connecting their
outputs. In effect, the circuits are designed so that the output level of all gates
when the gates are connected will be the lowest level any gate would output if the
gates were operated singly.

Figure 3.37(b) and (c) shows examples of NAND-to-wired-AND nets which
correspond in function to those in Figs. 3.33 and 3.34. Again, we emphasize that
not all NAND gates can be wire-ANDed by using a simple connection. When this
is possible, however, the saving in circuitry and speed improvement makes the
configuration desirable.

An important observation should be made here: If inputs are wire-ANDed by
using a simple connection, a single variable cannot be tied to the AND connection.
A single input NAND gate (inverter) must be used. Refer to Fig. 3.38, which
shows a design where a single variable B occurs in the minimal expression.

To explain this problem, if in Fig. 3.38 A and C are each 1 and B is 0, then
the NAND gate output should be 0, while the value of B is 1. What would the
value at the wired AND junction be? Will the NAND gate output pull B down, or

Design for NOR-to-
OR gate network.

108

BOOLEAN ALGEBRA
AND GATE
NETWORKS

FIGURE 3.37

Wired AND gate

(A+B)(C+D) (E+F)

This indicates a “wired AND" gate

QA

(ABC) (DE) = (A +B+C) (D+E)

= D

N x|

(ABC) (AB) (BC)

(A+B+C) (A +B)(B+C)

(c)

NAND to wired AND
networks. (a) NAND-
to-AND with wired
AND gate. (b) NAND-
to-AND with wired
AND for Fig. 3.33(a).
{c) NAND to wired
AND for Fig. 3.34.

will the 1 on B force the level up? The situation is to use an AND gate, not a
wired AND, or to use a NAND gate with the ability to have its output wire-ANDed,
as shown in Fig. 3.38.

Some NOR gates will form an OR gate at their output when they are con-
nected. Figure 3.39 shows a NOR-to-wired-OR net with output function
A+B)+ (C+D)= A-B + C-D. This expression, AB + 6-5, shows us
that the NOR-to-OR gate network functions as an AND-to-OR gate network but
with each variable complemented. Again, the dotted symbol shows the gate is
wired OR.

* The above result shows that we can design for NOR-to-wired-OR networks
just as for NOR-to-OR networks.

Again, note that only certain NOR gates can be connected at their outputs to

AB
00011110

n

B

This cannot be used

109

PLAs AND PALs

FIGURE 3.38

form wired ORs. Some ECL circuits make this possible, and the manufacturer
notes this on the specification sheets.

PLAs AND PALs

#3.25 When a design has been made for a gate network, the next step is to
implement the design using integrated circuits. As has been mentioned, the most
used IC line for gate networks has been a line called transistor-transistor-logic
(TTL). Figure 3.40(a) shows an IC container, and Fig. 3.40(b) shows the gate
layout in that container. This is called the pin-out for the IC package. The package
in Fig. 3.40(b) is one of several hundred different gate™ layouts from which a
designer can choose. By using this particular IC package, the NAND-to-NAND
gate network for AB + BC can be realized by connecting the pins of the package
as shown in Fig. 3.40(c). These connections are often made as conducting metallic
strips on printed-circuit boards on which the IC containers are mounted.

NAND-to-AND gate
design with single
variable.

110

FIGURE 3.39

NOR-to-wired-OR
gate network.

As the number of gates in a network increases, more 1C packages such as
that in Fig. 3.40 are required. To decrease the number of IC packages required
and simplify interconnecting the packages, IC manufacturers have evolved manu-
facturing processes which greatly increase the number of gates that can be placed
in a single IC container. This large-scale integration leads to several basic design
problems, however. For example, the inputs and outputs to the gates in Fig. 3.40
are all available and the gates can be interconnected in any desired manner, but if

FIGURE 3.40 more gates are placed in a single container, the number of pins in the IC container
must be increased. This increases the cost of the container substantially and de-
, . creases the ability of the designer to select just the right combination of gates for
tainer and pin-out.
(a) Integrated circuit the network. Also connections must still be made outside the IC container. If the
container. (b) Pin-out Same connections are made inside the container (on the IC chip), they would cost
showing gate layout less and be more reliable. This leads to the idea of a chip with a specific gate
in container in (a). (¢) layout in which the gates are interconnected on the chip. An IC chip with a specific

NAND-to-NAND gate o5 Jayout made for a particular design is called a custom chip. Unfortunately,
set realizing A8 +

Integrated-circuit con-

BC.
These two connections
Inputs are made externally
Vee Vee A B B C
10-116 |4 |13 |12 J11r Jro Jo I8 |4 |13 |12 |11 Jio]9 |8
Dual inline
Pin 14
Pin 1
These pins are to make 1 2 |3 4 5

conn;_ctions to circuits GND
on chip
This gate is Output
not used AB+BC

(a) (b) (c)

generating a complete design for a new individual custom IC chip'? can be very
expensive (costs can be from $50 to several hundreds of thousands of dollars). This
means that start-up costs for a computer design that requires a number of custom
chips can be very high. Once custom chips are made, however, for large runs, the
cost per manufactured chip is low.

The high start-up costs for custom chips have caused designers to use 1C
packages with only a few gates per package, as in Fig. 3.40, and form the gate
networks by interconnecting the gates outside the IC packages (using a printed-
circuit board, as previously noted), particularly when small numbers of the design
are to be made. However, although this approach is practical and economical for
small production runs, it does not utilize the level of integration'? possible for
present ICs.

To aid designers in using fewer chips. IC manufacturers make semicustom
chips in IC containers in which a basic two-level gate network with many gates is
produced and the gates can be interconnected on the chip as desired. These are
called progran?mable logic arrays (PLAs) or programmable array logic (PALs)."
Figure 3.41 shows a layout for a small PLA. This particular array has three AND
gates and two OR gates. (In actual practice, an array would have several hundred
or more gates.) Note that the connections from inputs A, B, C, to the AND gates
are not complete and that the AND gate outputs are not connected to the OR gates.
These connections are made as desired by the gate network designer.

Figure 3.42 shows a design which uses the PLA in Fig. 3.41 and which
realizes the two boolean algebra expressions ABC + AB (for output 1) and AB +
AC (for output 2).

These PLAs are manufactured in two different ways. In the first, the manu-
facturer places a fused connection at every intersection point in the PLA between
the inputs and the AND gates and between the AND and OR gates. Thus every
possible connection is made when the PLA is manufactured, and then the undesired
connections are removed by blowing the fuses.'® This type of PLA is often called
a field-programmable logic array (FPLA).

In the second manufacturing technique, the desired connections are made
during manufacture. The manufacturer originally makes the IC array layout so that
any desired connections can be made, and the logic designer tells the manufacturer
which connections to make for a particular design. Then the manufacturer creates
a mask, which generates the desired connections when layers of metallization are
added to the chip during manufacture. Setting up this mask costs far less (several
hundred dollars or less) than designing an entire new chip with the precise logic

"2A custom IC chip is one made from scratch for a particular purpose. A particular gate configuration
can be manufactured into a chip by developing the masks used to produce the chip design.

"*The level of integration is the complexity of the chip in terms of gates per chip. Small-scale integration
(SSI) is roughly 1 to 20 gates per chip, medium-scale integration (MSI) is 20 to 100 gates per chip,
large-scale integration (LSI) is 100 to 1000 gates per chip, and very large-scale integration (VLSI) is
more than 1000 gates.

“PAL is a registered trademark of Monolithic Memories.

"5The fuses are blown by selecting a fuse using logic levels at the inputs and then applying a relatively
high voltage to a pin on the IC container. Electronic instruments can be purchased which blow selected
fuses on a PLA. This is called programming the PLA.

111

PLAs AND PALs

112

B C Note: |f fused, each wire crossing looks like this

7 :

FIGURE 3.41

Layout for three-input
two-output PLA.

Output 1 Output 2

array desired by the logic designer. And production runs of these chips are inex-
pensive.

Note that the AND gate which generates AB in Fig. 3.42 has its output
connected to two OR gates. This is sometimes a useful and desirable feature for
PLAs enabling a single AND gate to be used for two outputs.

Most larger PLAs contain several hundred gates, 15 to 25 inputs, and 5 to
15 outputs. This offers the logic designer great flexibility. The low cost per unit
of these IC gate networks has led to widespread use of PLAs.

To design these large arrays, a simplifying symbology has proved useful.
Figure 3.43 shows this for the array in Fig. 3.42. The crosses drawn on the function
indicate ANDs, and the squares indicate ORs. The figure also shows that the AND
can be realized by a single semiconductor junction (called a diode), and the OR
can be realized by a single junction pointed the other way. In practice, the manu-
facturer lays out the chip with junctions at every intersection of the lines, and only
the desired diode connections are made.'® Note: This is simply a redrawing of Fig.

"*For ficld-programmable logic arrays (FPLAs) the diodes are fused so they can be blown by an
instrument called an arrav programmer. This sets the FPLA as desired.

113

ABC

Output 1 Output 2

AC

FIGURE 3.42

Connection design
for three-input two-

ABC+AB AB+ AC output PLA.

X denotes AND

0O denotes OR

A [’cv >’
B ¥— '
as follows
l—’c —
C *
l ~$» becomes
»—K
This line car/riV This “Ee cfr_ries
= ABC + AB
ABC H—
h [
oo L

FIGURE 3.43

A frequently used
way to draw PLA de-
signs.

Note: An AND can be implemented

* becomes g

D

Output 1

Output 2

114 1 |
1 i
L—D@ I
|
2 |
| I
>]
inputs < 3 |
$
] >° |
BOOLEAN ALGEBRA |
ANDGATE | e 1l |
NETWORKS |
| X .
L '
‘ i
i %LLP |
o ' |
|
FIGURE 3.44
Out 1 Out 2 Out m

Layout for PAL.

%

) T
-

1
i
L]
|
|
1
H
1
1

-r—t—t—t-+-14-1+-

FIGURE 3.45

PAL design for ABC
+ AB + AC. Out 1 Out 2 Out m

SIGNETICS BIPOLAR FIELD-PROGRAMMABLE LOGIC ARRAY s 825100, 82S101

115

16X48X8 FPLA PROGRAM TABLE

THIS PORTION TO BE COMPLETED BY SIGNETICS

CUSTOMER SYMBOLIZED PART #

CF «XXXX)
DATE RECEIVED
COMMENTS

PROGRAM TABLE ENTRIES

INPUT VARIABLE

OUTPUT FUNCTION

OUTPUT ACTIVE LEVEL

Im

Im

Don't Care

Prod Term Prod. Term Not
Present in Fp Present in Fp

Active Active
High Low

H

L — (dash)

A * (period)

H L

NOTE

Enter 1 for unused 1nputs of used

P-terms

NOTES
1
2 Enter A Iev unused cutputs of used P-terms

Entries incepencent ot output polanty

NOTES

1 Polanity programmed once only
2 Enter 'K for all unused outputs

PRODUCT TERM?

4
(o]

111——111
s514f[3]2f{1]o0

_INPUT VARIABLE

b

9

8| 7[s] 5=

bl
n
-
o

ACTIVE LEVEL!
—Im T

™ =T 1
R R WY E T SR D

OUTPUT FUNCTION-
716[s]a[3]2[110

@I Dnefw]|vfja]|

DATE

TOTAL NUMBER OF PARTS
EV

CUSTOMER NAME
PURCHASE ORDER #
SIGNETICS DEVICE #
PROGRAM TABLE #

a

47

{1} 1nout an Output 1wids of unused P-terms can be left biank Unused INDUtS and Outouts are FPLA terminals leM fiosting

FIGURE 3.46

Program table for a
PLA.

116

BOOLEAN ALGEBRA
AND GATE
NETWORKS

FIGURE 3.47

Pin configuration for 825100

I,N PACKAGE~™

GND
*I = Ceramic
N = Plastic

tOpen during normal operation

Pin-out for PLA. (Sig-
netics Corp.)

3.42 with a different symbology. This symbology becomes very useful when there
are many inputs and gates, however.

Figure 3.44 shows the layout for a version of the PLA which has become
popular and which is called programmable array logic. The PALs are very similar
to PLAs except that the OR gates are fixed and permanently connected to a set of
AND gate output lines. As a result, AND gates cannot be shared, but the fixed
OR gate connections lead to an ease of manufacture which has proved popular.
Figure 3.45 shows a PAL design using the AND symbology (crosses) at intersec-
tions as in Fig. 3.43.

The current nomenclature calls the version of Fig. 3.44 in which the AND
element connections are fused a PAL. but calls the version in which the manufac-
turer makes the connections hard array logic (HAL).

EXAMPLE OF DESIGN USING A PLA

3.26 Since PLAs and PALs are widely used because of their economy and speed
of operation, we examine the design of a small network employing a widely used
table listing.

16X48X8 FPLA PROGRAM TABLE

Forms ABC
Forms BC
Forms AC

Realizes AB + AC

Realizes ABC + AB

- FIGURE 3.48

Program table for
PLA design in Fig.
Figure 3.46 shows a program table for a PLA manufactured by Signetics. 3-42.
This PLA has 16 input variables and 8 outputs from OR gates. Also, 48 AND
gates can be formed on the chip. This PLA is packaged in a 28-pin IC container,
anc the pin-out is shown in Fig. 3.47.
The table in Fig. 3.46 can be filled out to describe a particular gate network
and then mailed to an IC manufacturer, who will then produce chips with a gate
network corresponding to the table. Although a Signetics table is used here, the
table is typical and other manufacturers provide the same service.
The table is filled out as follows:
First, the logic input variables are identified with the INPUT VARIABLE
number 0 to 15 on the table. We fill out the table for Fig. 3.42 as a (small) example.
To do this, we identify A with input 2, B with input 1, and C with input 0 on the
program table. We now wish to form the product terms ABC, AB, and AC. The
rule is that if an input is not complemented (inverted), an H is written in the table;
if the input is to be complemented, an L is written; and if the input is not used, a
— is written. To form ABC, then, we form a row in the table containing dashes
everywhere except in INPUT VARIABLE columns 2, 1, and 0, and in these we
. write H, H, and L. This is shown in Fig. 3.48.
The OR gate inputs are written as follows:
If the AND term in a particular row is to be used in an OR output, an A (for 117

118

FIGURE 3.49

Program table for
three AND-to-OR gate
networks.

16X48X8 FPLA PROGRAM TABLE

Output 0 = A + BC + ACD
Output 1 = BC + AB + ABCD
Output 2 = ACD + ABCD + BC + AC

Note: Inputvariable 3= A
2=B

]

0
o0

1
0

active) is written in the row; if not, a ® is written. In Fig. 3.48, the OUTPUT
FUNCTION line 0 in the table is associated with OUTPUT 1 in Fig. 3.42 and
OUTPUT FUNCTION line 1 is associated with OUTPUT 2 in Fig. 3.42.

A final example is shown in Fig. 3.49. In this case, there are three output
lines 0, 1, and 2. We associated A with INPUT VARIABLE 3 on the table. B with
2, C with i. and D with 0. The functions formed are

OUTPUT LINEO = A + BC + ACD_
OUTPUT LINE | = AB + BC + ABCD
OUTPUT LINE 2 = BC + ACD + ABCD + AC

I

Clearly PLAs provide a convenient way to fabricate 1C chips with gate nct-
works. The fact that field-programmable arrays with a given design can be made
by blowing selected fuses and then the computer design can be tested by using
these trial chips is very convenient. Later. for production runs, the chips made by
a manufacturer from the table can be used.

This part of the IC business is sufficiently developed that PLA designs can
be punched into cards and sent to a manufacturer, punched into tapes and sent to
a manufacturer, and even sent over the telephone line from a terminal connected
to a tape reader. (Manufacturers will provide a long-distance number you can call
to phone in designs.)

SUMMARY

3.27 This chapter presented the basic idea ok a gate and showed how gates can
be interconnected to form logic networks. The basic types of gates were introduced:
AND, OR, NAND, and NOR gates and inverters.

The design of logic networks for computers is greatly facilitated by boolean
algebra. This subject was introduced, and tables of combination, theorems of the
algebra, and algebraic reduction of expressions were all explained.

The map method for simplifying boolean algebra expressions was presented.
This makes it possible to minimize boolean expressions. thereby also simplifying
the logic networks that realize these expressions. The various network forms such
as AND-t0-OR, NAND-to-NAND, OR-to-AND, NOR-to-NOR, NAND-to-AND,

and NOR-to-OR networks were explained, and the design procedure for each was -

presented.

Gating networks can now be made with many gates in a single container by
using LSI manufacturing techniques. The general layout for several such integrated
circuits was presented, as was a special representation which is commonly used.
This makes possible design of relatively large arrays of gates using PLAs, PALs,
and HALs.

QUESTIONS
3.1 Prepare a truth table for the following boolean expressions:
(a) XYZ + XYZ (b) ABC + ABC + ABC
(c) A(BC + BC) (dA+B@A+C)A+B)
3.2 Preparca table of combinations for the following boolean algebra expressions:
(@) XY + XY _ (b) XYZ + XYZ (c) XYZ + XY
(d) XYZ + XYZ + XYZ (e) XY + YZ (f) AB(ABC + BC)
3.3 Prepare a truth table for the following boolean expressions:
(a)AB+AB (b)éli+BC_ _
(¢) AC + AC (d) ABC + ABC + ABC

(¢) AB(ABC + ABC + ABC)

34 Prepare a table of combinations for the following boolean algebra expressions:

(a) X(Y + Z) v XY (b) XY(Z +YZ) + 7
(cy [X(Y + Y) + X(Y + 1))Z (d) AB_(AB + AB)
(e) AlB + C) + C] (f) ABC (ABC + ABC)

3.5 Prepare atable of combinations for the following boolean algebra expressions:
(@) XY + XYZ (b) ABC + AB + AB
(¢) ABC + AC

119

QUESTIONS

12C0

BOOLEAN ALGEBRA
AND GATE
NETWORKS

3.6 Prepare a table of combinations for the following boolean algebra expressions:

(a) ABC + AB _ (b) ABC + AC + AB
(c) XZ + XY + XZ

3.7 Simplify the following expressions, and draw a block diagram of the circuit
for each simplified expression, using AND and OR gates. Assume the inputs are
from flip-flops.

(a) ABC + ABC + ABC + ABC

(b) ABC + ABC + ABC + ABC + ABC + ABC + ABC

(c) A(A+B+C)(A+B+C)(A+B+C)(A+B+C)

dA+B+C)A+B+C)A+B+C)A+B+0)

3.8 Simplify the expressions in Question 3.4 and draw block diagrams of gating
networks for your simplified expressions, using AND gates, OR gates, and in-
verters.

3.9 Simplify the following expressions:
(a) ABC (ABC + ABC + ABC) (b) AB + AB + AC + AC
(¢) XY + XYZ + XYZ + XZY (d) XYXYZ + XYZ + XYZ)

3.10 Simplify the expressions in Question 3.6 and draw block diagrams of gating
networks for your simplified expressions, using AND gates, OR gates, and in-
verters.

3.11 Form the complements of the following expressions. For instance, the com-
Blsment of (XY + XZ) is equal to (XY + XZ) = (X + Y) (X + Z) X +
YZ.

(a) (A + BC + AB) () A+ BB +C)A + C)

() AB + BC + CD (d) AB(CD + BC)

(e) AB + C)(C + D)

3.12 Complement the following expressions (as in Questlon 3.11):

(@ XY + XY (b) XYZ + XY
© XY +2) _ (d) X(YZ + Y2)
(e) XY(YZ + XZ) (f) XY + XY (YZ + XY)

3.13 Prove the two basic De Morgan theorems, using the proof by perfect in-
duction.

3.14 Prove the following rules using the proof by perfect induction:
(@) XY + XY =X
b)X+XY=X+Y

3.186 Convert the following expressions to sum-of-products form:
@@Aa+B8B+C)A+C) _
(b A + C)(A + B + C)(A + B)
o) A+ OC) (AB + AC) (AC + B)

3.16 Convert the following expressions to sum-of-products form:
(a) (A + B) (C +B) (b) AB (BC + BC)
() A+ BC) (AB + AB) (d) AB (ABC + AC)
(¢} (A + B)[AC + (B + ()] (f) (A + C)(AB + AB + AC)

3.17 Which rule is the dual of rule 12 in Table 3.10? 121
3.18 Giveadualof therule of X + XY = X + Y.

3.19 Multiply the following sum terms, forming a sum-of-products expression
in each case. Simplify while multiplying when possible.

(@) A+ C)B + D)

bDA+C+D)B+D+C)

(c) AB + C + DC) (AB + BC + D) _

(d) (AB + AB + AC) (AB + AB + AC)

QUESTIONS
3.20 Convert the following expressions to product-of-sums form:
(@ A + AB + AC (b) BC + AB
(c) AB(B + C) B (d) AB (BC + BC)
(&) A+ B + C)AB + AC) (f) (A + B) ABC

3.21 Write the boolean expression (in sum-of-products form) for a logic circuit
that will have a 1 output when X = 0, Y =0, Z=landX =1,Y =1,Z =
0; and a O output for all other input states. Draw the block diagram for this circuit,
assuming that the inputs are from flip-flops.

3.22 Convert the following to product-of-sums form
(a) AB + AB + C) (D + B)
b B+CIB+0@A+C)B+0)

3.23 Convert the following to product-of-sums form
(a) ABC + ABC + ABC
(b) ABC + BC (A + CD) (B + O)

3.24 Prove the following theorem, using the rules in Table 3.10:
X+VX+Y)=X

3.25 Write the boolean expression (in sum-of-products form) for a logic network
that will have a 1 output when X = 1, Y =0,Z=0,X=1,Y = 1,Z = 0
X=1,Y=1,Z=0,andX = 1,Y = 1, Z = 1. The circuit will have a 0
output for all other sets of input values. Simplify the expression derived and draw
a block diagram for the simplified expression.

3.26 Derive the boolean algebra expression for a gating network that will have
outputs Oonly when X = 1, Y =1, Z=1,X=0,Y=0,Z=0;X = 1,
Y = 0, Z = 0. The outputs are to be | for all other cases.

3.27 Prove rule 18 in Table 3.10, using the proof by perfect induction.

3.28 Develop sum-of-products and product-of-sums expressions for F,, F,, and
F, in Table 3.27.

3.29 Develop both the sum-of-products and the product-of-sums expressions that
describe Table 3.28. Then simplify both expressions. Draw a block diagram for
logical circuitry that corresponds to the simplified expressions, using only NAND
gates for the sum-of-products and NOR gates for product-of-sums expression.

122

BOOLEAN ALGEBRA
AND GATE
NETWORKS

INPUTS - OUTPUTS

% Y z F, F, Fs
o 0 0. 0.
0 .0 e 0

0 1 0 1

0 1 1 1

1 7 0 0 1

1 0 1 0

1 1 0 iy

1 el 1

TABLE 3.28 '

INPUTS OUTPUT
X Y V4 A
Q. e B
9. e 1 1
0 1 0 ik
0 Ch 1 0
it o ¢ | 0 0
EaN e 1 10
G 1 0 1
1 1 1 0

3.30 Draw block diagrams for the F|, F, and F; in Question 3.28, using only
NAND gates.

3.31 Write the boolean algebra expressions for Tables 3.29 to 3.31, showing
expressions in sum-of-products form. Then simplify the expressions and draw a
block diagram of the circuit corresponding to each expression.

3.32 Draw block diagrams for the F,, F,, and F; in Question 3.28, using only
NOR gates.

3.33 Draw block diagrams for F, F,, and F; in Question 3.28, using OR-to-
NAND networks.

3.34 Draw block diagrams for F,, F,, and F; in Question 3.28, using AND-to-
NOR gate networks.

3.35 Draw Karnaugh maps for the expressions in Question 3.2.
3.36 Draw Karnaugh maps for the expressions in Question 3.3.

3.37 For a four-variable map in W, X, ¥, and Z draw the subcubes for:
(a) WXY () WX (c) XYZ)Y

3.38 For a four-variable map in W, X, Y, and Z draw the subcubes for:
(a) WXYZ (b) Wz (c) WZ @y

TABLE 3.29

INPUTS OUTPUT
B c Z

1.3
0
o

-8 OO Q >

¥
0
'.

3.39 Draw maps of the expressions in Question 3.40; then draw the subcubes
for the shortened terms you found.

3.40 Applytherule AY + AY = A, where possible, to the following expressions:
(a) XY + XY (b) ABC + ABC
(¢) ABC + ABC (d) ABC + ABC + ABC + ABC
(e) ABC + ABC + ABC (f) ABC + ABC + ABC
Note: There is a technique for writing minterms that is widely used. It consists in
writing the letter m (to represent minterm) along with the value of the binary number
given by the row of the table and comhinations in which the minterm lies. For

instance, in the variables X, Y. Z we have the unfinished table of combinations
given in Table 3.32.

123

QUESTIONS

TABLE 3.30

INPUTS QUTPUT
A B C Z
g 0 o
0 0 1.
0 S o
(] 1 1
‘ 1 0
1 1 ’

TABLE 3.32

OUTPUT PRODUCT TERMS

DESIGNATION

OUTPUT

124

BOOLEAN ALGEBRA
AND GATE
NETWORKS

For this table my = XYZ, m, = XYZ, m, = XYZ, my = XYZ, and so to
m, = XYZ. Now we can substitute m,’s for actual terms and shorten the writing
of expressions. For instance, m;, + m, + m, means XYZ + XYZ + XYZ. Similarly,
my + my + mg + m, means XYZ + XYZ + XYZ + XYZ.

This can be extended to four or more variables. An expression in W, X, Y,

Z can be written as my + my3 + m;s = WXYZ + WXYZ + WXYZ. Or my + ms

+ my = WXYZ + WX YZ + WXYZ. As can be seen, to change a minterm to its
m;, simply make uncomplemented variables Is and complemented variables Os.
Thus WXYZ would be 0110, or 6 decimal; WXYZ would be 0010, or 2 decimal.
These two terms would then be written m, and m,. (Notice that we must know
how many variables a minterm is in.)

3.41 Draw the Karnaugh maps in X, Y, Z for:
(@) my + my + msg + my b)) m + m + mg + m,
(c) my + my + my + ms d) my + mg + my

3.42 Draw the subcubes for a three-variable map in X, Y, Z for:

(@ my + my + mg + my b)) my + my (c) my + m,
3.43 Find the maximal subcubes for the maps drawn for Question 3.42.
3.44 Find minimal expressions for the maps drawn in Question 3.42.
3.45 Using maps; simplify the following expressions in four variables, W, X, Y,
and Z:

(a my ~ my + mg - mg + my + myg + my; + m

b) my + my + my + mg + mg + my + my + mp; + my;
3.46 Using maps, simplify the following expressions in four variables W, X, Y,
and Z:

(@ m + my +ms+m + myp + mz + mg+ my

by my + mg + my + mg + my; + myz + mys
3.47 Using maps, derive minimal product-of-sums expressions for the functions
given in Question 3.46.

3.48 Using maps, derive minimal product-of-sums expressions for the functions
given in Question 3.42.

3.49 Using maps, simplify the following expressions, ysing sum-of-products form:
don’t-cares

(a) ABC + ABC + ABC + ABC + ABC
don’t-cares
———A ey

(b) ABC + ABC + ABC + ABC
’ don’t-cares

(¢c) ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

3.50 Using maps, derive minimal product-of-sums expressions for the functions

given in Question 3.49.

3.51 Using maps, sin{plify the following expressions, using sum-of-products form:

don’t-cares 125

(@) ABC + ABC + ABC + ABC + ABC
’ don’t-cares

(b) ABCD + ABCD + ABCD + ABCD + ABCD
don’t-cares
w —
(¢) ABCD + ABCD + ABCD + ABCD

3.52 (a) Design an AND-to-OR gate combinational network for the boolean

. QUESTIONS
algebra expression
ABCD + ABCD + ABCD + ABCD + ABCD + ABCD
Use as few gates as you can.
(b) Design a NOR gate combinational network for the boolean algebra
function in part (a). again using as few gates as you can.
3.53 The following is 8 NAND-to-NAND gate network. Draw a block diagram
for a NOR-to-NOR gate network that realizes the same function, using as few gates
as possible.
A
c
A
B
c
D
A
FIGURE Q3.53

3.54 (a) Derive a boolean algebra expression for the output Y of the network
shown.
(b) Convert the expression for Y derived in (a) to product-of-sums form.

) |

FIGURE Q3.54

126

BOOLEAN ALGEBRA
AND GATE
NETWORKS

FIGURE Q3.57

3.55 (a) Design an OR-to-AND gate combinational network for the boolean
algebra expression

4

ABCD + ABCD + ABCD + ABCD + (ABCD + ABCD)
The two terms in parentheses are don’t-care terms.
(b) Using only NAND gates, design 4 combinational network for the boo-
lean algebra function given in part (a).

3.86 (a) Design an OR-to-AND gate combinational network for the boolean
algebra expression

ABCD + ABCD + ABCD + ABCD + ABCD)

The two terms in parentheses are don't-care terms.
(b) Using only NOR gates, design a combinational network for the boolean
algebra function given in part (a)

3.57 The following NAND-to-AND gate network is to be redesigned using a
NOR-to-OR gate configuration. Make the change, using as few gates us possible.

3.88 () Design ai ANDF0-OR pute combinstona] neiwerk for the boniean
algebra expression

ABCI - ABCD + ABCD + ABCD + ABCiz @ A¥Fy

Use as few gates as you can.
(hi Design a NOR gate combinational network for she boolewn algebra
function in part (a:. again veing as few gates as you can.

3.89 Convert the foilowing NOR-10-OR ere seevork 1o a HAND-e-AND gate
network. Use as few gates as possibic.

[T

o Al

[l

3.60 (0) Design an AND-t0-OR gate combinational network for the boolean
algebra expression

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD

Use as few gates as you can.
(b) Design a NOR-to-NOR gate combinational network for the boolean
algebra function in part («), again using as few gates as you can.

3.61 A combinational network has three control inputs C,, C,, and C;; three data
inputs A, A,. and Aj; and a single output Z. (And A,, A,, A, _C—,, C,, and C, are
also available as inputs.) Each input is a binary-valued signal. Only one of the
control inputs can be a | at any given time. and all three can be Os simultaneously.
When C, is a 1, the value of Z is to be the value of A,; when C, is a 1. the value
of Z is to be the value of A,; and when C; is a 1, the value of the output is to be
the value of A;. If C,, C;, and C; are Os, the output Z is to have value 0. Design
this network, using only NOR gates. Make the network have two levels, and use
as few gates as possible.

3.62 The following NAND-to-AND gate network is to be redesigned by using a
NOR-to-OR gate configuration. Make the change, using as few gates as possible.

W |

O 7w

3.63 Convert the following NOR-to-NOR gate network to a NAND-to-AND gate
network. Use as few gates as possible.

FIGURE Q3.59

127

FIGURE Q3.62

128

BOOLEAN ALGEBRA
AND GATE
NETWORKS

FIGURE Q3.63

FIGURE Q3.65

;

Qi Wl

Ol i

B

e

3.64 Will the minimal expression of the function in Table 3.33 require fewer
NAND gates or NOR gates? (d means don’t-care.) Assume complements are avail-
able. How many gates for each? Give your minimal expressions.

3.65 The following NAND-to-AND gate network must be converted to a NOR-
to-OR gate network. Make the conversion, using as few gates as possible in your
final design.

-

-

3.66 Will the minimal expression for the function in Table 3.34 require fewer
NAND gates or NOR gates? (d means don’t-care.) Assume complements are avail-
able. How many gates for each? Give your minimal expressions. ‘

3.67 Simplify: _ . _ .
@W+X+Y+2)W+X+Y+2)W+X+7Y + 2
don’t-cares

Ql

——

W+X+Y+2)W+X+Y+2)W+X+7Y +2)
W+X+Y+2
(b) ABCD + ABCD + ABCD +
don’t-cares

ABCD + ABCD + ABCD + ABCD + ABCD
(¢) For parts (a) and (b), design block diagrams for the logical circuitry of

x
>

2 3 a4

X X OUTPUT

JNIIPFG T g X« N X N~ N - N K- 3 =]
P B OOOOma w0000
B H OO SO0 m OO~ 00
PO DO OO0 0-0
og.oo.oo-n;o.—h;¢o—-»o’

TABLE 3.34

X, X, X3 X4 OUTPUT

PO G G g Y e X v R e R N = X = X = o]
I N Ko X = R il = = g~ =]
_a...o;:-a—-oo-a-aooa—ioo
R TS Ny Sy g R~

the simplified expressions, using either NAND gates only or NOR gates only.
Assume that complements of the inputs are available. The same type gates do not
have to be used for both (a) and (b).

3.68 Write a boolean algebra expression in sum-of-products form for a_gating
network with three inputs A, B, and C (and their complements A, B, and C) that
is to have a 1 output only when two or three of the inputs have a 1 value. Imple-
ment, using a NAND-to-wired-AND gate network.

3.69 Draw a block diagram for a gate network having a NOR-to-OR gate network
with three inputs, A, B, and C (and their complements) that have a 1 output only
when two or three of the inputs have a 1 value, as in Question 3.68.

3.70 Will the minimal expression for the function in Table 3.35 require fewer
NAND gates or NOR gates? (d means don’t-care.) Assume that complements are
available. How many gates for each? Give your minimal expressions.

129

QUESTIONS

130

BOOLEAN ALGEBRA
AND GATE
NETWORKS

FIGURE Q3.71

FIGURE Q3.72

OUTPUT

-
|

x

b)(

B adh ad ed ek d 2 ODOOOOOO
Bl > e = IEE N o I o SO o, SR, QA SRR, Y
20002200000 =-=O

R h e DODO OO0

3.71 The following is a NAND-to-NAND gate network. Draw a block diagram
for a NOR-to-NOR gate network that realizes the same function, using as few gates
as possible.

Q>

W |

1L
>

Output

o]

h

Q

3.72 Convert the following NOR-to-OR gate network to a NAND-to-NAND gate
network. Use as few gates as possible.

Q iy

Qigﬁ

(W] IS

3.73 (a) Design an AND-to-OR gate combinational network for the boolean
algebra function.

F = WXYZ + WXYZ + WXYZ + WXYZ + WXYZ

Use as few gates as you can.
(b) Design a NOR gate combinational network for the boolean algebra
function in part (a). again using as few gates as you can.

3.74 This chapter has explained a number of two-level networks that can be used
to implement all possible functions of a given number of variables. There are also
two-level networks that can implement only a few of the many functions possible.
For instance, an AND-to-AND gate network is only the AND function as shown
below:

Similarly, a NAND-to-OR implements only an OR function with complemented
inputs as shown below:

In all, 8 of the possible 16 two-level network arrangements that can be made
with NOR, NAND, OR, and AND gates will realize all functions, while 8 are
degenerate and yield only a few of the functions. Identify the degenerate forms
and the forms that will yield all functions.

3.75 This chapter did not treat the two-level AND-to-NOR form. Derive a rule
for designing AND-to-NOR gate networks, and show how it works for a problem
of your choice.

3.76 This chapter did not treat OR-to-NAND gate networks, although all boolean
functions can be realized by using that configuration. Derive a sample network,
using your rule.

3.77 Show how the NOR-to-NAND gate network shown at the top of page 132
can be replaced by a single gate.

131

QUESTIONS

FIGURE Q3.74a

FIGURE Q3.74b

132

FIGURE Q3.77

FIGURE Q3.78

FIGURE Q3.80

3.78 Convert the following NAND-to-NAND gate network to a (two-level) NOR-
to-OR gate network:

aQl

ot

al

3.79 Using as few gates as possible, design a NAND-to-AND gate network that
realizes the following boolean algebra expression:

ABCD + ABCD + ABCD + ABCD + ABCD

3.80 Convert the following NAND-to-NAND gate network to a (two-level) NOR-
to-OR gate network:

aQl

Output

al Wi

3.81 Convert the following NAND-to-NAND gate network to a NOR-to-NOR
gate- network:

133

A—] '

C >l i : N >l J
A—n

Py | FIGURE Q3.81

3.82 Convert the following NOR-to-OR gate network to a NAND-to-AND gate
network. Use as few gates as possible.

o
o=

C FIGURE Q3.82

TS

3.83 Convert the following NAND-to-AND gate network to a NOR-to-OR gate
network. Use as few gates as possible.

T Qltwi

S

FIGURE Q3.83

(ol}

3.84 Using a PLA table as in Fig. 3.46, design a three-input, six-output gate
network that squares each input. (Inputs and outputs are unsigned binary integers)

3.85 Using a PLA table as in Fig. 3.46, design a network that forms the 9s
complement of a BCD number in 2, 4, 2, | form.

134

BOOLEAN ALGEBRA
AND GATE)
NETWORKS

3.86 Using the PAL in Fig. 3.44, design a three-input gate network which finds
the 2s complement of a positive input number.

3.87 Using the PLA symbology in Fig. 3.43, design a logic network that converts
a BCD number in 2, 4, 2, 1 form to 8, 4, 2, 1 form.

3.88 Using a PLA table as in Fig. 3.46, design a four-input, five-output circuit
that adds 3 to a BCD number in &, 4, 2, 1 form.

3.89 Using the PLA in Fig. 3.41, show how to form the two outputs X =
ABC + ABC and ¥ = ABC + AB.

3.90 Using the symbology in Fig. 3.43, form a design for a PLA with two outputs
X = ABC + ABand Y = ABC + ABC + AB.

LUBGIC DESIGI

Chapter 3 described gates and the analysis of gating networks by using boolean
algebra. The basic devices used in the operational or calculating sections of digital
computers consist of gates and devices called flip-flops. It is remarkable that even
the largest of computers is primarily constructed of these devices. Accordingly,
this chapter first describes flip-flops and their characteristics. From an intuitive
viewpoint, flip-flops provide memory and gates provide operations on, or functions
of, the values stored in these memory devices.

Following the introduction to flip-flops, the use of flip-flops and gates to
perform several of the most useful functions in computers is presented. The par-
ticular functions described include counting in binary and binary-coded decimal,
transferring values, and shifting or scaling values stored in flip-flops.

Several other names have been used instead of flip-flop. These include binary
and toggle, but flip-flop has been the most frequently used. Also, there are several
other types of memory devices in computers, and these are studied in Chap. 6. For
actual operations, flip-flops remain dominant, however, because of their high speed,
the ease with which they can be set or read. and the natural way gates and flip-
flops can be interconnected.

This chapter also contains a section on clocks in digital computers. Computers
do not run by taking steps at random times, but proceed from step to step at intervals
precisely controlled by a clock which provides a carefully regulated time base for
all operations. Some knowledge of the uses of clocks in computers is indispensable,
and the subject is introduced here.

136

LOGIC DESIGN

OBJECTIVES

1 The basic memory cells in the operational part of a digital computer are
electronic circuits called flip-flops. The operation of these devices is described, as
are the details of clocks and how clocks are used to initiate flip-flop operation.

2 Binary counters consist of flip-flops and gates and count up (or down) at the
direction of a clock and (sometimes) control inputs. The basic types of binary and
BCD counters are described.

3 Electronic digital circuits are packaged in small integrated-circuit (IC) con-
tainers. The number of gates and flip-flops in a single package determines the level
of integration for the package, and the various levels of integration are discussed.
(The number of gates and flip-flops on a chip is sometimes called the packing
density.) Several actual IC packages from the most used IC lines are presented.
Then a shift register with feedback is designed using these packages.

4 Two representation techniques for digital design and analysis are called state
tables and state diagrams. These are described, as is a procedure for designing a
particular arrangement of flip-flops and gates called a state machine. Several design
examples are presented, followed by an introduction to a class of integrated circuits
which can be used to implement these designs.

FLIP-FLOPS

4.1 The basic circuit for storing information in a digital machine is called a flip-
flop. There are several fundamental types of flip-flops and many circuit designs.
However, two characteristics are shared by all flip-flops.

1 The flip-flop is a bistable device, that is, a circuit with only two stable states,
which we designate the O state and the 1 state.

The flip-flop circuit can remember, or store, a binary bit of information
because of its bistable characteristic. The flip-flop responds to inputs. If an input
causes it to go to its 1 state, it will remain there and ‘‘remember’’ a 1 until some
signal causes it to go to the O state. Similarly, once placed in the O state. the flip-
flop will remain there until it is told to go to the 1 state. This simple characteristic,
the ability of the flip-flop to retain its state, is the basis for information storage in
the operating or calculating sections of a digital computer.

2 The flip-flop has two output signals, one of which is the complement of the
other. ‘

Figure 4.1 shows the block diagram for a particular type of flip-flop, the RS
Aip-flop. There are two inputs, designated S and R, and two outputs, marked with
X and X. To describe and analyze flip-flop operation, there are several conventions
that are standard in the computer industry.

1 Each flip-flop is given a ‘‘name.’’ Convenient names are letters, such as X
or Y or A or B; or letter-number combinations, such as A, or B,; or sometimes,

Inputs Outputs

because of difficulty in subscripting on typewriters or printers, simply Al or B2.
The flip-flop in Fig. 4.1 is called X. It has two outputs, the X output and the X
output.

The X and X output lines are always complements; that is, if the X output
line has a 1 signal, the X output line has a 0 signal; and if the X output line has a
0 signal, output line X has a 1 signal.

2 The state of the flip-flop is taken to be the state of the X output. Thus if the
output line X has a 1 signal on it, we say that “‘flip-flop X is in the 1 state.”
Similarly, if the X line contains a O signal, we say that ‘‘flip-flop X is in the O
state.”’

These conventions are very important and convenient. Note that when flip-
flop X is in the 1 state, the output line X has a 0 on it; and when flip-flop X is in
the O state, the output line X has a1 on it.

There are two input lines to the RS flip-flop. These are used to control the
state of the flip-flop. The rules are as follows:

1 As long as both input lines S and R carry O signals, the flip-flop remains in
the same state, that is, it does not change state.

2 A1 signal on the S line (the SET line) and a 0 signal on ‘the R line cause
the flip-flop to “‘set’’ to the 1 state.

3 A1 signal on the R line (the RESET line) and a O signal on the § line cause
the flip-flop to ‘‘reset’’ to the O state.

4 Placing a 1 on the S and a 1 on the R lines at the same time is forbidden. If
this occurs, the flip-flop can go to either state. (This is, in effect, an ambiguous
input in that it is telling the flip-flop to both SET and RESET at the same time.)

An example of a possible sequence of input signals and the resulting state of
the flip-flop is as follows:

[
k]

X X is the state of the flip-flop after inputs S and R are applied.

Flip-flop remains in same state.

Flip-flop is reset.

Flip-flop is told to reset but is already reset.

Flip-fiop is set.

O~ OOV OO =
OO0 —-200—-000
- m OO0 2

FIGURE 4.1

137

RS flip-flop.

138

FIGURE 4.2

RS flip-flop wave-
forms.

+2V

L 1 ov

0
+2V
1 ov

1 1
+2V
[ov

+2V

0
L ov

Although the above conventions may seem formidable at first, they can be
simply summarized by seeing that a 1 on the S line causes the flip-flop to SET
(that is, assume the | state) and a 1 on the R line causes the flip-flop to RESET
(that is, assume the O state). The flip-flop does nothing in the absence of 1 inputs
and would be hopelessly confused by Is on both S and R inputs.

It is very convenient to be able to draw graphs of the inputs and outputs from
computer circuits to show how they act as inputs vary. We assume the convention
that a 1 signal is a positive signal and a O signal a ground, or 0-V, signal. Ths is
conventional in most present-day circuits and is called positive logic. Figure 4.2
shows several signals as they progress in time, with the current binary values of
each signal written above it. The signals in Fig. 4.2 are the sequence of signals
given in the list above along with both the X and X output line signals from the
flip-flop. We have arbitrarily chosen +2 V for the 1 state of the signals and 0 V
for the O state because these are very frequently used levels. Notice that the flip-
flop changes only when the input levels command it to, and that it changes at once.
{Actually, there would be a slight delay from when the flip-flop is told to change
states and when it changes. since no physical device can respond instantly; so we
assume that the flip-flop’s delay in responding is quite small, perhaps a small
fraction of a microsecond.)

TRANSFER CIRCUIT

4.2 The RS flip-flop, although simple in operation, is adequate for all purposes
and is a basic flip-flop circuit. Let us examine the operation of this flip-flop in a
configuration called a transfer circuit. Figure 4.3 shows two sets of flip-flops named
X}, X3, and X; and Y. Y,, and Y. The function of this configuration is to transfer
the states, or contents, of Y, into X, Y, into X,, and Y5 into X, upon the TRANSFER
command which consists of a 1 on the TRANSFER line.

Assume that Y, Y,, and Y, have been set to some states that we want to
remember, or store, in X, X,, and X;, while the Y flip-flops are used for further
calculations. Placing a 1 on the TRANSFER line will cause this desired transfer
of information. Understanding the transfer of the state of ¥, into X, depends on
seeing that if Y, is in the O state, the ¥, output line has a 0 on it, and so the input
line connected to the AND gate will be a 0 and the AND gate wili place a 0 on
the S input line of X,, while the ¥, output from Y, will be a 1, causing, in the
presence of a 1 on the TRANSEFER line, a 1 on the R input of X,. Similar reasoning

Transfer

will show that a | in Y, will cause a | to be placed in X, in the presence of a |
on the TRANSFER line. As long as the TRANSFER line is a 0, both inputs to the
X flip-flops will be Os, and the flip-flop will remain in the Jast state it assumed.

The above simple operation, the transfer operation, is quite important. Re-
lated sets of flip-flops in a computer are called registers, and the three flip-flops
Y,, Y,, and Y; would be called simply register Y, and the three flip-flops, X,, X,,
and X; would be called register X. Then a 1 on the TRANSFER line would transfer
the contents of register Y into register X. This is an important concept.

CLOCKS

4.3 A very important fact about digital computers is that they are clocked. This
means that there is some ‘‘master clock’ somewhere sending out signals which
are carefully regulated in time. These signals initiate the operations performed.

There are excellent reasons why computers are designed this way. The al-
ternative way, with operations triggering other operations as they occur, is called
asynchronous operation (the clocked way is called synchronous operation) and
leads to considerable difficulty in design and maintenance. As a result, genuinely
asynchronous operation is rarely used.

The clock is, therefore, the mover of the computer in that it carefully measures
time and sends out regularly spaced signals which cause things to happen. We can
examine the operation of the flip-flops and gates before and after the clock *‘initiates
an action.’’ Initiating signals are often called, for historical reasons, clock pulses.'

Figure 4.4 shows a typical clock waveform. The clock waveform in Fig.
4.4(a) and (b) is called a square wave. The figure shows two important portions
of a square wave: the leading edge, or rising edge, or sometimes positive-going
edge; and the falling edge, or negative-going edge. These are particularly important

'Thg term clock pulse has a historical origin. The early computers used short electric pulses to initiate
operations, and these were naturally called clock pulses. Few circuits still use these narrow pulses, and
the majority of circuits now respond to edges of square waves as in Fig. 4.4.

FIGURE 4.3

139

Transfer circuit.

140

FIGURE 4.4

Positive going or rising edge of signal

-

L

(a)
Negative going or falling edge of signal

L

{b)

Clock waveforms.

since most flip-flops now in use respond to either (but not both) a falling edge or
a rising edge. In effect, a system which responds to rising edges of the clock
“‘rests’’ between such edges and changes state only when such positive-going edges
occur. (The reason for the rest periods is to give the circuits time to assume their
new states and to give all transients time to die down. The frequency at which
such edges occur is generally determined by the speed with which the circuits can
g0 to their new states, the delay times for the gates which must process the new
signals, etc.)

Since clock signals are used to initiate flip-flop actions, a clock input is
included on most flip-flops. This input is marked with a small triangle, as shown
in Fig. 4.5(a). A clocked flip-flop can respond to either the positive-going edge of
the clock signal or the negative-going edge.? If a given flip-flop responds to the
positive-going edge of the signal, there is no ‘‘bubble’’ at the triangle or clock
input on the block diagram, as in Fig. 4.5(a). If the flip-flop responds to a negative-
going edge, or signal, a bubble is placed at the clock input, as in Fig. 4.5(b).

Sometimes the clock input is simply marked with a CL instead of the triangle.
Manufacturers who adopt this practice will explain whether the flip-flop is or is
not edge-triggered in the specifications sheet for the flip-flop.

It is important to understand the above convention because most clocked flip-
flops actually respond to a change in clock input level, not to the level itself. This
is shown in Fig. 4.5(c) and (d). The flip-flop in Fig. 4.5(a) responds to positive-
going clock edges (positive shifts), and a typical set of signals for the clocked RS
flip-flop in Fig. 4.5(a) is shown in Fig. 4.5(c).

The flip-flop is operated according to these rules:

1 If the S and R inputs are Os when the clock edge (pulse) occurs, the flip-flop
does not change states but remains in its present state.

2 If the S input is a 1 and the R input is a 0 when the clock pulse (positive-
going edge) occurs, the flip-flop goes to the 1 state.

2A flip-flop which responds to a rising or falling clock signal (as opposed to responding to a dc level)
is called an edge-triggering, or master-slave, flip-flop for reasons that will be explained.

4

This symbol is used
for a positive-going
edge clocked flip-flop.

This symbol is used
for a negative-going
edge clocked flip-flop.

(a) (b)
1st clock 2d 3d 4th 5th 6th
Y \ \ \ \ \
Clock I I—
S input
R input
X_J —
(c)
Falling edges
1st 3d 4th 5th
v Y \ \
Clock
S input —
R input I
X R————

(d)

141

CLOCKS

FIGURE 4.8

going edge occurs.

If the S input is a O and the R input a 1 when the clock pulse occurs, the
flip-flop is cleared to the O state.

Both the S and R inputs should not be 1s when the clock signal’s positive-

Clocked flip-flops and
waveforms. (a) Posi-
tive-edge-triggering
flip-flop. (b) Negative-
edge-triggering flip-
flop. {c) Waveforms
for positive-edge-trig-
gering flip-flop in (a).
(d) Waveforms for
flip-flop in (b).

142

LOGIC DESIGN

FIGURE 4.6

Of course, nothing happens to the flip-flop’s state between occurrences of
the initiating positive-going clock signal. Figure 4.5(c) shows this with a . square-
wave clock signal. The flip-flop is set to a | by the first clock positive-going edge
and a O at the occurrence of the second clock signal. No change occurs at the third
positive-going clock edge. The flip-flop is set to 1 again on the fourth edge and
remains a 1 until the sixth clock edge occurs. Notice that the S and R inputs can
be anything between the clock edges without affecting the operation of the flip--
flop. (They can even both be Is without effect, except when the posmve‘gomg
edge occurs.)

Figure 4.5(d) shows typical waveforms for the flip-flop in Fig. 4.5(). This
flip-flop is negative-edge triggering because it responds to shifts in the clock level
which are negative-going. The rules of operation are as before: 0s on § and R lead
to no change; a 1 on S sets the flip-flop; and a 1 on R clears the flip-flop. The flip-
flop responds to the S and R inputs only at the precise time the clock input goes
negative.

FLIP-FLOP DESIGNS

4.4 Flip-flops can be made from gates; in fact, this is a common practice. Figure
4.6 shows two NOR gates cross-coupled to form an RS flip-flop. The cross-coupled
NOR gates in Fig. 4.6(a) have two inputs, S and R, and two outputs, Q, and Q.
This configuration realizes the RS flip-flop in Fig. 4.6(b).

The operation of the NOR gates is as follows: Consider both S and R to be
0Os. If Q is a 1, then the rightmost NOR gate has a 1 and a 0 input and its output
will be a 0. This places a 0 on the Q output and two Os at the input to the leftmost
NOR gate which will have a 1 output, and the configuration will be stable. Similar
reasoning will show that the configuration will be stable with a 1 on Q and a
Oon Q.

The S and R inputs work as follows: If a 1 is placed on the R input and a 0
on the S input, this will force the leftmost NOR gate to a 0 output, and this will
cause the rightmost NOR gate to have two Os as inputs and a 1 output. The flip-
flop has now been cleared with a O on the Q output and a 1 on the Q output.
Similar reasoning will show that a | on the S input and a 0 on the R input will
force the NOR gate flip-flop to the 1 state with Q a 1 and Q a 0.

GATED FLIP-FLOP

4.5 Just as Fig. 4.6 showed that two NOR gates can be used to form an RS flip-
flop, Fig. v4.7 shows that two NAND gates can be used to form an RS flip-flop

AS flip-flop formed
by cross-coupling
NOR gates. (a) Cross-
coupled NOR gates.
(b) RS flip-flop corre-
sponding to (a).

(a) (b)

O Q out
LN P
tt S R | NEXTSTATE
SET RESET
— 0 0 | NOT USED
R 0 1 1
_ 1 0 0
S 1 1 | NOCHANGE

‘>:Jr

143

FIGURE 4.7

(however, the inputs are complemented). In this case the inputs operate as follows:
When both S and R are Is, the flip-flop will remain in its present state, that is, it
will not change states. If, however, the R input goes to a 0, the NAND gate
connected to R will have a 1 output regardless of the other feedback input to the
NAND gate. This will force the flip-flop to the O state (provided the S input is kept
high or a 1).

Similar reasoning shows that making the S input a 0 will cause the NAND
gate at the S input to have a 1 output, forcing the flip-flop to the 1 state (again
provided the R input is kept high or 1).

If both inputs R and S are made Os, the next state will depend on which input
is returned to 1 first. If both are returned to 1 simultaneously, the resulting state
of the flip-flop will be indeterminate. As a result, this is a *‘forbidden,’” or *‘re-
stricted,”’ input combination.

The block diagram in Fig. 4.7 shows the flip-flop to be a conventional RS
flip-flop, except that the two inputs are inverted. This is shown by the two bubbles
at the R and S inputs. The circuit is activated by Os and inputs are normally
at 1.

A limited form of clocked flip-flop called a latch can be formed by using
four NAND gates, as shown in Fig. 4.8(a). The circuit has an R and an S input
and also a clock input CL. This latch flip-flop is activated by a positive level on
the clock input, and not by a positive transition. Thus the flip-flop ‘‘takes’” its
input levels during the positive portion of clock signals, not changes in clock levels.
Let us see how the circuit works. If the clock signal is at the 0 level, both NAND
gates A and B will have 1 outputs, and so the NAND gate inputs to C and D will
be a 1 and, as before, the flip-flop will remain in its present state with either C or
D on. (Both cannot be on because of the cross-coupling.)

If the clock signal goes to the 1 level and both inputs R and S are at the 0
level, the NAND gate outputs of A and B will still be 1s, and the flip-flop will
remain in the same state.

If the R input is a 1 and the S input a O, when the clock input goes positive
(a 1), the NAND gate connected to R will have a 0 output and the NAND gate
connected to S a 1 output, forcing the flip-flop consisting of C and D to the O state.

Similarly, a 1 at the S input and a O at the R input will cause the S input
gate A to have a 0 output and the R input gate B a 1 output, forcing the flip-flop
to the 1 state.

Two NAND gates
used to form an RS
flip-flop.

SET §

Q output

Clock

CL _
Q output

AESET R

LOGIC DESIGN

Clock

S

R

Q
L 5 Q output
Clock
CL -

Q output

-FIGURE 4.8 D I ! I | l |

I
Latches. (a) RS latch. n
(b) RS flip-flop wave- Q I—L
forms. {c) D latch. (d)
(d) Waveforms for D
latch.

If both S and R are 1s and a clock pulse (O level to 1 level and back to 0)
occurs, the next state of the circuit is indeterminate.

A major problem with this circuit is that the R and S inputs should remain
unchanged during the time the clock is a 1. This considerably limits the use of the
circuit, leading to more complicated circuits that can offer the designer more flex-
ibility. The primary value of the circuit is its simplicity.

The block diagram for a latch is the same as for an edge-triggered flip-flop
except for the small triangle at the clock input for edge-triggered flip-flops and a
CL for the latch.

Often designers specifically identify latches on block diagrams so that users
will realize that the state taken by the flip-flop is determined by the R and § inputs
during the positive clock level, and not at the edge of the clock signal.

Manufacturers often put a number of latches in a single IC package. In this
case, a special kind of flip-flop called the D flip-flop is often used. A D-type latch
flip-flop is shown in Fig. 4.8(c). The advantage of this is the single D input. The
D flip-flop takes the value at its D input whenever the clock pulse input is high.
It will effectively ‘‘track’’ input levels as long as the clock input is high, as shown
in Fig. 4.8(d). If the clock input is lowered, the state will be the last state the flip-
flop had when the clock input was high. If the clock input returns to O just before
or during a transition in the input to the D latch, the final state the flip-flop takes
will depend on the delay time for the flip-flop. Allowing input transitions during
the time period when the clock is high is dangerous, unless there is assurance that
the D input will not change for a safe period before the clock input is lowered.

MASTER-SLAVE FLIP-FLOP

4.6 To eliminate problems which arise with the latch type of flip-flop, more
complicated flip-flop designs are used. The most popular uses edge triggering from
the clock to initiate changes in the flip-flop’s output and is based on the use of two
single or latch flip-flops to form a single edge-triggered flip-flop.

The basic flip-flop design is shown in Fig. 4.9. Figure 4.9(a) shows that an
edge-triggering RS flip-flop consists of two flip-flops plus some gating. The two
flip-flops are called the master and slave. An expanded logic diagram for Fig.
4.9(a) is shown in Fig. 4.9(b) in which the master flip-flop is composed of the
leftmost NAND gates and the slave flip-flop of the rightmost NAND gates.

The expanded diagram in Fig. 4.9(b) can be used to explain the flip-flop’s
operation. The flip-flop’s output changes on the negative-going edge of the clock
puise. The basic timing is shown in Fig. 4.9(d). First, on the positive-going edge
and during the positive section of the clock pulse, the master flip-flop is loaded by
the two leftmost NAND gates. Then, during the negative-going edge of the clock
signal, the two rightmost NAND gatcs load the contents of the master flip-flop into
the slave flip-flop just after the two-input NAND gates are- disabled. This means
that the master flip-flop will not change in value while the clock is low (0); so the
slave remains attached to a stable flip-flop, with a value taken during the positive
section of the clock pulse.

A more detailed account of the action of the flip-flop is as follows: If the
clock signal is low, the two-input NAND gates both have 1 outputs; so the master

145

MASTER-SLAVE
FLIP-FLOP

i

Clock

LOGIC DESIGN) (a)

Master flip-flop Slave flip-flop

Gates A and B enabled A and B disabled
E and F disabled _/ Clock signal E and F enabled
(b)

= B

{c}
FIGURE 4.9

(a) RS clocked edge-

triggering flip-flop.

(b) Gate arrangement

for master-siave flip- flip-flop does not change states since it is a NAND gate flip-flop and can be set or

flop. (c) Master-slave ¢leared only by 0 inputs.

:L‘;ﬂszfnit:lt.e table At the same time, as long as the clock signal is low (a 0), the inverter causes
the inputs to the £ and F NAND gates to force the value of the master flip-figp

into the slave flip-flop. The situation is stable. The master cannot change, and the
output flip-flop is ‘‘slaved’’ to the master.

When the clock starts positive, however, the E and F NAND gates are
disabled, and the NAND gates A and B to the master flip-flop are then enabled.

When the input clock signal is a 1, then the master flip-flop will accept
information from the S and R inputs, and the slave flip-flop is now isolated from
the master ana will not change states regardless of changes in the master.

The operation of the master flip-flop is according to the following rules when
the clock level is a I:

1 If both § and R are at 0 levels, the two input NAND gates will have 1 outputs
and the master flip-flop will not change values.

2 If the S input is a 1 and the R input a 0, the master flip-fiop will go to its 1
state, with the upper master NAND gate having a 1 output.

3 If the S input is a 0 and the R input a 1, the master flip- ﬂop will go to its 0
state, with the upper NAND gate having a 0 output.

4 If both R and § are Is, the final state is mdetermmate

When the clock signal goes negative to its O level, first the input NAND
gates to the master flip-flop are disabled, that is, each output goes to a 1; then the
E and F NAND gates are enabled (by the inverted clock signal). This causes the
state of the master flip-flop to be transferred into the slave flip-flop.

The effects of all this are shown in the next-state table in Fig. 4.9(c), which
indicates that the flip-flop is an RS flip-flop activated by a negative-going clock
signal.

An edge-triggering flip-flop which triggers on positive edges can be made by
adding an inverter at the CL input.

SHIFT REGISTER

4.7 Figure 4.10 shows a shift register. This circuit accepts information from
some input source and then shifts this information along the chain of flip-flops,
moving it one flip-flop each time a positive-going clock signal occurs.

Figure 4.10 also shows a typical sequence of input signals and flip-flop signals
in the shift register. The input value is taken by X, when the first positive-going
clock signal arrives.> Anything in this and the remaining flip-flops is shifted right
at this time. We have assumed that all the flip-flops are initially in their O states.
In the figure, the input waveform is at 1 when the first clock occurs; so X, goes to
the 1 state.

3There is some delay from the time the positive-going edge of the clock signal tells a flip-flop to “‘go”’
until the flip-flop’s outputs are able to change values. The clock signal itself will also require some
small amount of time to rise, for physical reasons. For present systems the rise time on the clock
signals, that is, the time to rise 90 percent of total rise, ranges from about1 X 1072 to about 50 x
10~ s. The delay from the clock-signal change until a flip-flop’s output changes 90 percent, which is
called the delay time, ranges from 10.5 X 107%to 50 x 10~° s for most circuits.

A

147

SHIFT REGISTER

148

LOGIC DESIGN

FIGURE 4.10

Clock

Input

Clock

Input

Shift register with
waveforms.

When the second positive-going clock signal arrives, the input is at 0; so X,
goes to the O state, but the 1 in X, is shifted into X,. When the third clock edge
appears, the input is a 1; so X, takes a !, the O previously in X, is shifted into X,
and the 1 in X, goes into X;. This process continues. The values in X; are simply
dropped off the end of the register.

Notice that each flip-fiop takes the value in the flip-flop on its left when the
shift register -is stepped. The reasoning is as follows: If. for instance, X, is in
the 1 state, then its X output line is a 1 and thus the S input to X, will be a 1; and
the X output of X, will be a 0. and so the R input of X, will be a 0. This causes
X, to take its 1 state when the clock pulse occurs. A 0 in X, will cause X, to go
to 0 when the clock pulse occurs, and the reason for this should be analyzed.

There is one problem that could occur if certain design precautions were not
taken with the flip-flops. If the flip-flop putputs changed too fast or if latches were
used, a state could ripple, or race, down the chain. This is called the race problem.
It is handled by designing the flip-flops so that they take the value at their inputs
just as the clock positive-going edge occurs and not slightly after the clock’s rise
time. This leads to ‘the complexity in flip-flop design. which has been discussed.
Edge-triggered (master-slave) flip-flops are necessary for proper operation.

BINARY COUNTER

4.8 Inasmuch as the binary counter is one of the most useful of logical circuits,
there are many kinds. The fundamental purpose of the binary counter is to record

Input

RESET counter

Input

149

BINARY COUNTER

FIGURE 4.11

the number of occurrences of some input. This is a basic function, that of counting,
and it is used over and over.

The first type of binary counter to be explained is shown in Fig. 4.11. This
counter records the number of occurrences of a positive-going edge (or pulse) at
the input. ’

It is desirable to start this counter with Os in all three flip-fiops; so one further
line is added to each flip-flop, a DC RESET line. This line is normally at the 0
level, when it goes positive, or 1, it places a O in the flip-flop. This action does
not depend on the clock. When a DC RESET line is at the 1 level. the flip-flop
goes to 0 regardless of any other input and in the absence or presence of a clock
pulse.

It is quite common for flip-flops to have a DC RESET line. Notice that this
input ‘‘overrides’" all other inputs when it is a 1, forcing the flip-flop to the 0 state.
A 0 on this line, however, does not affect flip-flop operation in any way.

Before counting begins, then, a | is placed temporarily on the RESET
COUNTER line, and the three flip-flops are cleared to 0. The RESET COUNTER
line is then returned to 0.

When the first clock positive edge occurs, the flip-flop X, goes to its 1 state.
This is because when the flip-flop X, is in the O state, the X, output ishigh, or 1,
placing a 1 on the § input (refer to Fig. 4.11), and the X, output is low, or 0,
placing a 0 on the R input; so a 1 goes into flip-flop X,.

Flip-flops X, and X, are not affected by this change, for although the }_(,
output is connected to the clock input of X,, the signal has gone from 1 to 0. This
is a negative shift, which does nothing to X,.

Binary counter.

150

LOGIC DESIGN

The counter now has X; = 0, X, = 0, X; = 1, or binary 001; so the first
input clock edge has stepped the counter from 000 to 001.7

The occurrence of the second positive-going clock edge causes flip-flop X
to go from the 1 state to the O state. The reasoning is as follows: When X, isal,
the X, output is a 1 and is connected to the R input, and the X, output is a 0 and
is connected to the S input. This tells the flip-flop to **go to 0,”” and when the
second clock pulse occurs, it goes.

This is important: When a flip-flop is cross-coupled, that is, when its uncom-
plemented output is connected to its R input and its complemented output to its §
input, the occurrence of a clock edge will always cause it to complement, or change
values.

The change of value from 1 to 0 of flip-flop X, causes X, to change from a
0 to a 1. This is because X,’s output is connected to the CL input of X, and has
gone from 0 to 1, a positive shift; and since X, is cross-coupled. it will complement
(change values) and go from O to 1. This does not affect X, because the CL input
of X, has gone from 1 to 0, a negative shift.

The counter has now progressed to X; = 0, X, = I, and X; = 0: so the
sequence of states has been 000, 001, 010.

Reasoning of this type will show that the progression of states by the counter
will be as follows:

X, X, X,
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
0 0 0
0 0 1
0 1 0

This is a list of binary numbers from 0 to 7, which repeats over and over. After
five input pulses the counter contains 101, or binary 5; after seven pulses the counter
contains 111, or binary 7. The maximum number of pulses this counter can handle,
without ambiguity, is 7. After eight pulses the counter contains 0; after nine pulses,
1; etc. In the trade this is called a modulo 8, or three-stage, counter.

The counter can be extended by another flip-flop, X,, which is cross-coupled
and which has its CL input connected to the output of flip-flop X;. This forms a
four-stage, or modulo 16, counter, which can handle up to 15 counts. A fifth flip-
flop would form a counter which would count to 31, a sixth to 63, etc.

We now consider a gated-clocked binary counter. This is an exceedingly
popular counter in modern computers, and it demonstrates the fact that most oper-

Note that the binary numbers are written in the opposite direction from the block diagram layout,
which has the least significant bit on the left. This makes for a neater block diagram and is frequently
used. The standards, in fact, ask for left-to-right signal flow.

